If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2-129x+64=0
a = 64; b = -129; c = +64;
Δ = b2-4ac
Δ = -1292-4·64·64
Δ = 257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-129)-\sqrt{257}}{2*64}=\frac{129-\sqrt{257}}{128} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-129)+\sqrt{257}}{2*64}=\frac{129+\sqrt{257}}{128} $
| 2x+1/4=2x-4 | | 7=x/2+6 | | 4(c+11)=56 | | 9(t-3)+6=t+19 | | 4(3a-4)=10+8 | | 4(2x-2)+2=10 | | 4x+1=3x+2/3 | | 13=y-1/6 | | k+19=4(k-1)-10 | | 9+7x=4x-3 | | 4(3x-4)=10x+6 | | 9x-21=3x+15 | | 6(x+5)+10=27 | | 10(5x-10)=13 | | 2x+3=x+3/2 | | 4-8a=92 | | 14=x/3+5 | | 9(z-3)+6=3(z+3)+6 | | 59a+4)=10a+9 | | 6x-17=3x+16 | | 7x+2(4x-2)=27 | | 6(8x-12)=6 | | t=-16/3t^2+3.75t | | 2x+4=3x+5/4 | | 12-5m=67 | | x-10/3=13 | | 7(x+1)+3=2(x-1)-1 | | 10(2b+1)=2b+1 | | 9x-15=x+17 | | 15=7(x+1)-6x | | Y=-16x^2+96x+6 | | 40x-10=-55 |